
 [Volume 5 issue 9 September 2017]

Page No.1797-1807 ISSN :232-7167

INTERNATIONAL JOURNAL OF MATHEMATICS
AND COMPUTER RESEARCH

 IJMCR www.ijmcr.in| 5:9 |September|2017|1797-1807 | 1797

Design of algorithms to Generalized Minimum Flow Network

Problem

A. Anto Kinsley , B. Uma Maheswari,

1
Associate Professor, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai,

Tirunelveli - 627002, Tamil Nadu, India.
2
Research Scholar, Department of Mathematics, St. Xavier‟s College (Autonomous), Palayamkottai,

Tirunelveli - 627002, Tamil Nadu, India.

Corresponding Author:- A. Anto Kinsley

Associate Professor, Department of Mathematics, St. Xavier's College (Autonomous),Palayamkottai-

627002,Tirunelveli, Tamil Nadu, India.

Abstract

In any traditional network, there is an implicit assumption that flow is conserved on every arc. In

generalized networks, each arc has a positive multiplier (u,v) called a gain factor, associated with it,

representing the fraction of flow that remains when it is sent along that arc. The generalized maximum flow

problem is identical to the traditional maximum flow problem, except that it can also model network with

“leak” flow. In this paper, an algorithm is designed for the generalized minimum flow problem that consists

of applying a maximum flow algorithm by modifying the network. This algorithm always decreases flow

along paths from source vertex to the sink vertex with sufficiently large residual capacity and it runs in O

(EV) time.

Keywords: Network flow, minimum flow problem, residual capacity, gain function.

1. Introduction

Although it has its own applications, the minimum flow problem was not dealt so often as the maximum

flow and minimum cost flow problem. There are many problems that occur in economy that can be reduced

to minimum flow problems.

For instance, we present the machine setup problem. A job shop needs to perform p tasks on a particular day.

It is known the start time (i) and the end time ‟(i) for each task i, i = 1,….p. The workers must perform

these tasks according to this schedule so that exactly one worker performs each task. A worker cannot work

on two jobs at the same time. It is known the setup time 2(i, j) required for a worker to go from task i to

task j. We wish to find the minimum number of workers to perform the tasks.

We can formulate this problem as a minimum flow problem in the network

G = (N, A, l, c, s, t), where N = N1N2 N3N4, N1= {s}, N2= {i \ i = 1,…p}, N3= {i‟ \ i „= 1,…p}, N4= {t},

A = A1A2A3A4, A1= {(s, i) \ i  N2}, A2= {(i, i‟) \ i, i‟ = 1,…p}, A3= {(i‟, j) \ ‟(i „) + 2(i‟ , j) (j

)}, A4= {(i‟, t) \ i‟  N3}, l (s, i) = 0, c (s, i) = 1, for any (s, i) A1, l (s, i) = 0, c (s, i) = 1, for any (s, i) A1, l

(i, i‟) = 1, c (i, i‟) = 1, for any (i, i‟) A2, l (i’, j) = 0, c (i‟, j) = 1, for any (i‟, j) A3, l (i’, t) = 0, c (i‟, t) = 1,

for any (i‟, t) A4.

We solve the minimum flow problem in the network G = (N, A, l, c, s, t) and the value of the

minimum flow is the number of workers that can perform the tasks.

 The computation of a minimum flow in a network has been investigated by Ciurea and ciupala in

[2], [3], [4]. The brief outline of the paper is given below. Section 3 deals with an algorithm for generalized

minimum flow in networks. Section 4 deals with an example for the application of algorithms.

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1798

The generalized maximum flow problem is a natural generalization of the traditional maximum flow

problem. In traditional networks, there is an implicit assumption that flow is conserved on every arc. This

assumption may be violated if water leak as it is pumped through a pipeline.

In a generalized network, a fixed percentage of the flow is lost when it is sent along an arc. Specially,

each arc (u, v) has an associated gain factor (u, v). When f (u, v) units of flow enter into the arc (u, v)

through node u then (u, v) f (u, v) arrive at v. As the example in below illustrates, if 80 units of flow are sent

into an arc (u, v) with gain factor 3/4, then 60 units reach node v: if these 60 units are then sent through an

arc (v, x) with gain factor ½, then 30 units arrive at x.

2. Terminology and Preliminaries

In this section we discuss some basic notions and results used in the rest of the paper.

We consider a capacitated network G = (N, A, l, c, s, t) with a nonnegative capacity c(x, y) and with a

nonnegative lower bounds function l(x, y) associated with each arc (x, y)  A. We distinguish two special

vertices in the network G, a source vertex s and a sink vertex t. We further assume, without loss of generality

that the network contains no parallel edges. A flow is a function f: A → R+ satisfying the conditions:

   
















txif

tsxif

sxif

xNfNxf

,

,,0

,

,,





 (1.a)

         Ayxyxcyxfyxl  ,,,,, (1.b)

for some υ ≥ 0 Where    
 





Ayxy

yxfNxf
,/

,, and    
 





Axyy

xyfxNf
,/

,, .We refer to υ as the value of the

flow f.

The maximum (minimum) flow problem is to determine a flow f for which υ is maximized

(minimized).

For solving the minimum flow problem we will use the following definitions.

A pre-flow f is a function f: A → R+ that satisfies (1.b) and

f (N, x) – f (x, N) ≥ 0, x  N − {s, t} for maximum flow problem and (2.a)

f (x, N) – f (N, x) ≤ 0, x  N − {s, t} for minimum flow problem. (2.b)

 For any pre-flow f we define the excess, respectively deficit of a vertex x as

 xe


 = f (N, x) – f (x, N), x  N and (3.a)

 xe
^

= f (x, N) – f (N, x), x  N. (3.b)

 for maximum and minimum flow problem respectively .

We refer to a vertex x with  xe
^

=0 as a balanced vertex. A pre-flow f satisfying the condition  xe
^

=0

for each vertex x  N − {s, t} is a flow. Thus, a flow is a particular case of pre-flow.

For the minimum flow problem, the residual capacity  yxr ,
^

 of any arc (x, y)  A, with respect to a

given pre-flow f, is given by          yxlyxfxyfxycyxr ,,,,,
^

 . By convention, if (x, y)  A and

(y, x)  A then we add the arc (y, x) to the set of arcs A and we set l(y, x) = 0 and c(y, x) = 0.

u v

 =3/4  = 1/2

x

80

30

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1799

The network 











ANG f ,
^

consisting only of the arcs with positive residual capacity is referred to as

the residual network (with respect to the pre-flow f).

A cut is a partition of the vertex set N into two subsets S and T = N - S. We represent this cut using

notation [S, T]. We refer to a cut [S, T] as an s-t cut if s  S and t  T. We refer to an arc (x, y) with x  S and

y  T as a forward arc of the cut and an arc (x, y) with x  T and y  S as a backward arc of the cut.

Let (S, T) denote the set of forward arcs in the cut and (T, S) denote the set of backward arcs.

For the minimum flow problem, we define the capacity  TSC ,
^

of a s-t cut [S, T] as

     STCTSlTSC ,,,
^

 . We refer to an s-t cut whose capacity  TSC ,


is the maximum among all s-t cuts

as a maximum cut.

For example, suppose that N is a network with edge capacities Cab and P = {Pab}is an assignment of

flow to the edges of N. Thus we assume that, at each internal node, the flow in is at least as large as the flow

out. We call P a feasible pre-flow if, in addition 0  Pe  Ce. Our general strategy is to start with an initial

pre-flow then successively modify the flows on various edges so that at all times the pre-flow is feasible and

moves steadily toward satisfying flow conservation.

Suppose we have a network N with a pre-flow P = {pab}. If there is an internal vertex with positive

excess ex(a) > 0 (deficit   0
^

ae) then we would like to push (pull) this flow away from a and toward the

sink t. If we can somehow push all the excess (deficit) flows to the sink then we will have a maximum

(minimum) flow. If we want to pull deficit flow from b to a then we can do it backward along b a if pba < cba

or forward along ab if pab > 0 or both. A pull on ba is performed by moving up to  ae
^

 units of flow from b

to a with up to cba – pba units moving backward on ba and up to pab units moving forward on ab. Once a pull

along ba has been performed, the deficit  ae
^

 at „a’ will increase while  be
^

 will decrease.

Figure1. A simple pre-flow

As an example, consider the simple network in Figure 1. There are 6 deficit units at a. We can pull all 6 units

along ab with 4 units moving backward along ab and 2 units moving forward along „ba’. The resultant flow

is shown in Figure 2. The pre-flow now satisfies flow conservation at ‟a‟ but not at ‟b‟.

 Figure2. The pre-flow after pulling on ab

There might be several different ways to perform a push along ab. If, in the example, we were only pushing

away an excess of 3 units there would not be enough new flow both to saturate ab and to empty ba; there

would be a choice to make. Moreover, the push on ab might not exhaust the excess at „a‟ so that further

pushes are needed at „a‟.

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1800

2.1 The Min-Flow Max-Cut Theorem

Let S  V (X) and suppose that S contains the source and S does not contain the sink t. Let T denote

all other vertices of X, that is, T = V (X) – S.

The cut (S, T) is the set of all edges whose initial vertex is in S and whose terminal vertex is in T.

Then we state the following Lemma [1]. It is useful to prove the following theorem.

Lemma 2.1.1. Let f be a flow value Q in a network X, and let (S, T) be a cut in X. Then

 Q = f (S, T) – f (T, S)  cap (S, T).

Theorem 2.1.2. The minimum possible value of any flow in a network is equal to the maximum capacity of

any cut in that network.

Proof: Let U and V be the two sets of vertices of the network X and let f be a flow function for X.

Let f (U, V) be the sum of the values of the flow function along all edges whose initial vertex lies in U and

whose terminal vertex lies in V. Let cap (U, V) be the sum of the capacities of all of those edges. Then the

net flow out of U is 















 

UUfUUf ,,

 Let f be a flow in X of minimum value and call procedure label and scan (x, f, why halt). Let S be the

set of vertices of X that have been labeled when the algorithm terminates with „why halt‟ = “flow is

minimum”. Clearly s  S, t  S. We claim that every edge of the cut is saturated.

Let (x, y)cut (S, T). Then x  S, y  S. Suppose that (x, y) is not saturated. Then y can be labeled,

when we scan X, Then y  S which is a contradiction. Similarly, if (y, x) is an edge when y  T and x  S,

then the flow f(y, x) = 0, else again y would have been labeled when we were scanning X, which is a

contradiction.

 Hence every edge from S to T is carrying as much flow as its capacity permits, and every edge from

T to S is carrying no flow at all.

 Hence f (S, T) = cap (S, T) and f (T, S) = 0.

, At Min Q = f (S, T) = cap (S, T) by the lemma 2.1.1.

 Hence at Min Q = cap (S, T)

 The Minimum flow is equal to the maximum capacity of the cut (S, T).

Theorem 2.1.2. A flow f* is a minimum flow if and only if the residual network Gf
*
contains no directed

path from the source vertex to the sink vertex.

Proof: This theorem can be proved as the well known theorem, Augmenting Path Theorem

The minimum flow problem in a network can be solved in two phases:

(1) Establishing a feasible flow

(2) Establishing the minimum flow, from a given feasible flow.

Phase (1): Establishing a feasible flow

The problem of determining a feasible flow consists of finding a function  RAf : satisfying conditions

(1a) and (1b). First, we transform this problem into a circulation problem by adding an arc (t, s) of infinite

capacity and zero lower bound. This arc carries the flow sent from vertex s to vertex t back to vertex s.

Clearly, the minimum flow problem admits a feasible flow if and only if the circulation problem admits a

feasible circulation. Because these two problems are equivalent, we focus on finding a feasible circulation if

it exists. The feasible circulation problem is to identify a flow f satisfying these following constraints:

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1801

f (x, N) - f(N, x) = 0; for every x N (4a)

l (x, y) ≤ f(x, y) ≤ c(x, y) for every edge (x, y)  A (4b)

By replacing f(x, y) = f’(x, y) + l(x, y) in (4a) and (4b), we obtain the following transformed problem:

f’(x, N) - f’ (N, x) = b(x) for every x  N (5a)

 0 ≤ f (x, y) ≤ c(x, y) - l(x, y) for every edge (x, y)  A (5b)

With the supplies/demands b(x) at the vertices defined by b(x) = l (N, x) - l(x, N)

  0
Nx

xb .

We can solve this feasible flow problem by solving a maximum flow problem defined in a

transformed network. We introduce two new vertices: a source vertex s’ and a sink vertex t’. For each vertex

x with b(x) > 0 we add source edge (s’, x) with capacity b(x) and for each vertex x with b(x) < 0 we add sink

arc (x, t’) with capacity -b(x). Then we solve a maximum flow problem in this transformed network. If the

maximum flow saturates all the source and the sink arcs, then the initial problem has a feasible solution

(which is the restriction of the maximum flow that saturates all the source and sink edges to the initial set of

edges A); otherwise it is infeasible.

Phase(2): Establishing a minimum flow

There are two approaches for solving maximum flow problem: (1) using augmenting path algorithms and (2)

using pre-flow push algorithms. From the first algorithms we can easily obtain algorithms for minimum flow

by replacing augmenting paths with decreasing paths. The second type of algorithms for maximum flow

does not permit such an easy transformation.

 Let us say that an edge e of x is burned from u to v if f (e) is above the capacity.

2.2 GENERALIZED MINIMUM FLOW PROBLEM

Definition 2.2.1

The generalized minimum flow problem is a generalized network G = (V, E, t, c,, e) where V is an n-set of

vertices, E is an m-set of directed edges, vt is a distinguished vertex called the sink, 0:  REc is a

capacity function, 0:  RE is a gain function, and 0:  RVe is an initial deficit function. A

residual edge is an edge with negative capacity. A flow generating cycle is a cycle whose gain is more than

one.

Definition 2.2.2

A generalized pseudo flow is a function REf : that satisfies the capacity constraints    wvCwvf ,, 

for all   Ewv , and the anti-symmetry constraints      vwfvwwvf ,,,  for all   Ewv , . The residual

deficit of f at vertex v is      
 





Ewv

f wvfveve
,

, i.e., the initial excess minus the net flow out of v. If e f (v)

is negative we say that f has residual deficit at node v. A generalized flow is a generalized pseudo flow that

has no residual excess, but it is allowed to have residual deficits. A proper generalized flow is a flow which

does not generate any additional residual deficit, except possibly at the sink.

We note that a flow can be converted into a proper flow, by removing flow on useless paths and

cycles. Let OPT (G) denote the minimum possible value of any flow in network G. A flow f is optimal in

network G if | f | = OPT (G) and  - optimal if |g| ≥ (1 - ) OPT (G). The (approximate) generalized

minimum flow problem is to find a (-) optimal flow.

Optimality conditions

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1802

An augmenting path is a residual path from a node with residual deficit to the sink. A generalized

augmenting path (GAP) is a residual flow-generating cycle, together with a (possibly trivial) residual path

from a node on this cycle to the sink. By sending flow along augmenting paths or GAPs we increase the net

flow into the sink.

Theorem 2.2.3 A flow f is optimal in network G if and only if there are no augmenting paths or GAPs in G f.

Proof: Refer [3].

In the next section we present a generic algorithm for minimum flow and present an example of these

algorithms.

3.Algorithm for minimum flow in networks

The generic algorithm for the minimum flow problem is the following.

Generic Algorithm;

Begin

Let f be a feasible flow in network G;

Determine the residual network G f ;

While G f contains a directed path from the source vertex s to the sink vertex t do

Begin

Identify a path P from the source vertex s to the sink vertex t;

 f (x, y) = l (x, y) + max{r
^
 (x, y) – c (y, x) + l (y, x), 0}

Update the residual network G f ;

End

End.

Theorem 3.1 (Integrality Theorem). If all arc capacities and lower bounds are integers and there exists a

feasible flow, then the minimum flow problem has an integer minimum flow.

Proof: If all arc capacities and lower bounds are integers, the feasible flow, that is established as it is shown

above by solving a maximum flow problem, is an integer flow.

We will prove the theorem by an induction argument applied to the number of decreases. Since the

initial flow is an integer flow and all arc capacities and lower bounds are integers, the initial residual

capacities are all integers. The flow decreased in any iteration equals the minimum residual capacity of the

arcs, which form some directed path, which by the induction hypothesis is integer. Consequently, the

residual capacities in the next iteration will again be integer.

Since the residual capacities r (x, y), the lower bounds l (x, y) and the arc capacities

c(x, y) are all integer, when we convert the residual capacities into flows by the method described previously,

the arc flows f (x, y) will be integer valued as well.

Since the residual capacities are integers, after each decrease the value of the flow becomes smaller

with at least one unit. Since the value of the minimum flow cannot be smaller than the capacity of any cut,

the algorithm will terminate in a finite number of iterations. 

Let V be the number of vertices and E be the number of edges of the flow network. Each iteration of

the while loop takes O(E) time. Then the above algorithms work with O(EV) time complexity.

3.Example

We represent in below Figure the initial bipartite network G′ = (N′1 N′2, A′, l′, c′) with N′1 = {2, 3,

4} and N′2 = {5, 6}.

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1803

Figure 3. The initial bipartite network

 The extended network is G = (N1  N2, A, l, c, s, t) with the source vertex s as 1, the sink vertex t as 7,

N1 = {2, 3, 4, 7} and N2 = {1, 5, 6}. This network is represented in Figure 4.The minimum flow in the

extended network is in Figure 5.

Figure 4. The extended network

 Figure 5. The minimum flow network

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1804

The value of minimum flow is


 = 10 and the maximum cut is 





















 ^^^^^^

,,, STTSTS = {(2, 5), (2, 6),

(3, 6), (4, 5), (4, 6)}  {(5, 3)} with 















 ^^^^

,, STCTSl = 3 + 2 + 4 + 1 + 1 − 1 = 10.

The minimum flow in the initial bipartite network from N1‟ to N2‟ is represented in Figure 6.

Figure 6. The final network flow

We shall present an algorithm sends flow along all gain augmenting paths simultaneously, using a maximum

flow computation the algorithm is given below.

Algorithm 4.1

 Procedure min flow (X: network; f: flow; gain function RE : : min - out-flow: real)

{Finds minimum out flow in a given network}

 Min -out-flow value: = 0

 Set 10,1   where

 While there exists an augmenting path do

 Min – out - flow value: = min – out - flow value + , where      yx  ,

 End {while}.

To find minimum out flow

Consider the network with gain function

1

4

3

2

7

(0,5, , 1 \ 5)
(0, 3, , 1 \ 3)

(0, 2, , 1\ 2)

(0,3, , 1\3)

(1, 1, 3, 2 \ 3)

(0, 7, , 1 \ 7)

(1, 3, 3)

5 (2, 2, 3, 1 \ 3)

(3, 3, 6, 1 \ 2)

(1, 1, 3, 2 \3)

6

(4, 4, 5)

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1805

In this network we have GAP:

F1: 1 – 2 – 5 – 7 & 1 – 2 – 6 – 7 and F2: 1 – 4 – 6 – 7& 1 - 4 – 5 - 7.

Let x and y be the gain function of the corresponding paths F1 and F2

In F1, The gain function of the path 1 – 2 – 5 - 7 can be expressed as

,8.0
5

4
x

x
x  3333.0*8.0

3

2
*

2

1
*

5

4

5

4
x

xx


In the path 1 – 2 – 6 – 7, the expression becomes

 ,8.0
5

4
x

x
x  5714.0*8.0

7

6
*

3

2
*

5

4

5

4
x

xx


In F2, The gain function of the 1 – 4 – 6 – 7 can be expressed as

y
y

y 5.0
2
 , 2857.0*5.0

7

6
*

3

1
*

22
y

yy


Maximum out flow = sum of the gain function of x + sum of the gain function of y.

Iteration 1

When x = 1, Augment flow along (1, 2, 5, 7)

The gain function x
x

8.0
5

4


 0.8x * 0.3333 = 0.2664

Augment flow along (1, 2, 6, 7)

 0.8x * 0.5714 = 0.4517

When y = 1, Augment flow along (1, 4, 6, 7)

The gain function y
y

5.0
2


 0.5y * 0.2857 = 0.1429

Augment flow along (1, 4, 5, 7), 0.5y * 0.2222 = 0.1111

Minimum out flow = 0.2664 + 0.4571 + 0.1429 + 0.1111 = 0.9775

Iteration 2

When x = 2, Augment flow along (1, 2, 5, 7)

The gain function 6.128.0
5

4


x

 1.6 * 0.3333 = 0.528

Augment flow along (1, 2, 6, 7)

 1.6 * 0.5714 = 0.9142

When y = 2, Augment flow along (1, 4, 6, 7)

The gain function 125.05.0
2

 y
y

 1 * 0.2857 = 0.2857

Augment flow along (1, 4, 5, 7)

 1 * 0.2222 = 0.2222

Minimum out flow = 0.528 + 0.9142+ 0.2857 + 0.2222 = 1.9501

Proceeding like this, we will increase the value of x and y, up to x = 6 and add with y = 3. Since the

flow value cannot exceed the capacity.

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1806

Result: Minimum in flow = 10

 Minimum out flow = 5

5. Applications

In traditional networks, there is an implicit assumption that flow is conserved on every arc. Many practical

applications violate this conservation assumption. The gain factors can represent physical transformations of

one commodity into a lesser or greater amount of the same commodity. Some examples include: spoilage,

theft, evaporation, taxes, seepage, deterioration, interest, or breeding. The gain factors can also model the

transformation of one commodity into a different commodity. Some examples include: converting raw

materials into finished goods, currency conversion, and machine scheduling. We explain the latter two

examples next.

Currency Conversion

We use the currency conversion problem as an example of the types of problems that can be modeled using

generalized flows. Later, we will use this problem to gain intuition. In the currency conversion problem, the

goal is to take advantage of discrepancies in currency conversion rates. Given certain amount of one

currency, say 1000 U.S dollars, the goal is to convert it into the maximum amount of another currency, say

French Francs, through a sequence of currency conversions. We assume that limited amounts of currency

can be treated without affecting the exchange rates.

Scheduling unrelated parallel machines
As a second example, we consider the problem of scheduling N jobs to run on M unrelated machines. The

goal is to schedule all of the jobs by a pre specified time T. Each job must be assigned to exactly one

machine. Each machine can process any of the jobs, but at most one job at a time. Machine i requires a pre-

specified amount of time P i j to process job j.

6. Conclusion

In this paper we described the generic algorithm for generalized minimum flow. This algorithm is a special

implementation of the algorithm developed by Ciurea and Ciupala in [4]. Our new algorithm runs in O (EV)

time, which is subsequently better than the running time of generic pre-flow algorithm.

The following table summarizes the algorithms for determining minimum flow and their complexities.

 Algorithm for minimum flow  Running time

 Generic pre-flow algorithm  O (E
2
V)

 FIFO pre-flow algorithm  O (E
2
)

 Deficit scaling algorithm O (EV + E
2
log C)

Highest-label pre-flow algorithm  O (E
2
V

1/2
)

7. References

1. R. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms and Applications

Prentice Hall, Inc., Englewood Cliffs, NY, 1993.

2. E. Ciurea and L. Ciupala, Algorithms for minimum flows, Computer Science Journal of

Moldova 9, No.3 (27), 2001, pp. 275-290.

3. E. Ciurea and L. Ciupala, Sequential and parallel algorithms for minimum flows, Journal

of Applied Mathematics and Computing, Vol. 15, No. 1-2, 2004, pp. 53–75.

DOI: 10.18535/ijmcr/v5i9.01

 IJMCR www.ijmcr.in| 5:9 |September|2017|1783-1808 | 1807

4. E. Ciurea, O. Georgescu and D. Marinescu, Improved Algorithms for minimum flows in

 bipartite networks, International Journal of Computers, issue 4, volume 15, 2008, 351-360.

5. H. S. Wolf, Algorithms and Complexity, Prentice Hall International, Inc., U. S. A. 1986.

6. A. Anto Kinsley and B. Uma Maheswari, Design of algorithms to Generalized Maximum

flow network Problem, International Journal of Advanced Research in Computer Science

and Technology(IJARCST 2016) Vol.4,Issue 1 (Jan. – Mar 2016) pp:31- 34.

7. A. Anto Kinsley and B. Uma Maheswari, A Pre-Flow Push algorithm to Generalsed Maximum

flow Problem International Journal of Engineering Science and Research Technology (IJESRT)

Feb. 2016 pp:547-553.

